Regular dessins uniquely determined by a nilpotent automorphism group
نویسندگان
چکیده
منابع مشابه
Regular maps with nilpotent automorphism groups
According to a folklore result, every regular map on an orientable surface with abelian automorphism group belongs to one of three infinite families of maps with one or two vertices. Here we deal with regular maps whose automorphism group is nilpotent. We show that each such map decomposes into a direct product of two maps H×K, where Aut(H) is a 2-group and K is a map with a single vertex and a...
متن کاملFree Two-step Nilpotent Groups Whose Automorphism Group Is Complete
Dyer and Formanek (1976) proved that if N is a free nilpotent group of class two and of rank 6= 1, 3, then the automorphism group Aut(N) of N is complete. The main result of this paper states that the automorphism group of an infinitely generated free nilpotent group of class two is also complete.
متن کاملAlgorithms for classifying regular polytopes with a fixed automorphism group
In this paper, various algorithms used in the classifications of regular polytopes for given groups are compared. First computational times and memory usages are analyzed for the original algorithm used in one of these classifications. Second, a possible algorithm for isomorphism testing among polytopes is suggested. Then, two improved algorithms are compared, and finally, results are given for...
متن کاملUltra regular covering space and its automorphism group
In order to classify digital spaces in terms of digital-homotopic theoretical tools, a recent paper by Han (2006b) (see also the works of Boxer and Karaca (2008) as well as Han (2007b)) established the notion of regular covering space from the viewpoint of digital covering theory and studied an automorphism group (or Deck’s discrete transformation group) of a digital covering. By using these to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Group Theory
سال: 2017
ISSN: 1435-4446,1433-5883
DOI: 10.1515/jgth-2017-0044